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 Mathematics is often thought of as a purely European development.  History of 

mathematics books often focus on Greece as the epicenter for early mathematical 

discoveries.  For example, the main theorem about right triangles (the sum of the squares 

of the two smaller sides of a right triangle equals the square of the hypotenuse) is attributed 

to and now bears the name of a Greek, Pythagoras of Samos, born around 570-560 BC.  

Pythagoras is often credited with the first proof of the theorem; however his actual written 

proof has not been found.  Earlier civilizations definitely knew about this geometric fact, 

and perhaps after his travels, Pythagoras took this information back to Greece.  Around the 

same time as Pythagoras, the Sulvasūtras by Apastamba demonstrates that the Indian 

civilization was familiar the Pythagorean Theorem and Pythagorean Triples (sets of three 

numbers that satisfy the Pythagorean Theorem) (Boyer 207).  The Babylonians discovered 

the Triples much earlier.  In the Babylonian tablet known as Plimpton 322, Pythagorean 

Triples are arranged so that the first row corresponds to the ratio c2/b2, the second to the 

number a, and the third to the number c, such that a2 +b2 = c2.  This tablet is thought to 

come from approximately 1900-1600 BC, long before Pythagoras’ time (Boyer 34-37).  

While the Babylonians certainly knew about Triples very early on, the Chinese may have 

proven the Pythagorean Theorem the earliest; some estimates are as early as 1100 BC, 

although sixth century BC is more generally accepted (Swetz and Kao 14).  The 

Pythagorean Theorem and right-angled triangles were very prominent in Chinese writings, 

both in mathematical treatises and in more practical science books.  The Chinese grasped  

many right-angled triangle principles early on, and applied them to practical problems. 
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 China is an ancient civilization, akin to Babylon and Egypt.  Like the notched wolf 

bone in Europe, the first signs of math in China are the markings on tortoise shells and 

cattle bones, known as oracle bones, from the Shang dynasty, approximately 1200 BC.  

Later, the Chinese did calculations using small bamboo counting rods, which lead to the 

use of rod numerals and a positional system for writing numbers.  Unlike the Babylonians 

and their sexagesimal system, the Chinese tended to decimalize fractions, and unlike the 

Egyptians and their unit fractions, the Chinese used common fractions and were able to 

find the lowest common denominator in order to add different fractions.   The Chinese 

were also comfortable with negative numbers, using a red set of counting rods for positive 

numbers and a black set of counting rods for negative numbers, similar to modern 

accounting except with the colors are reversed (Boyer 198-201).  Like early writings in 

Egypt and Babylon, ancient Chinese mathematic books tended to be collections of 

practical problems, giving the problem first, then the answer, and sometimes the solution 

method.  The earliest books on mathematics seem to have been written in the Han dynasty, 

although dating the books is very difficult as the emperor Shih Huang-ti of the Ch’in 

dynasty ordered a burning of books in 213 BC.  In the following Han dynasty, 

mathematicians had to rewrite all of the old books from memory or from hidden scrolls 

(Swetz and Kao 17).  The early books are thus thought not to be the work of any one 

mathematician, but rather a collection of the mathematical knowledge up to that age.  The 

main early writings include the Zhou bi suan jing (The Arithmetic Classic of the Gnomon 

and the Circular Paths of Heaven), which is sometimes written as Chou Pei Suan Ching; 

and the Chiu chang suan shi (The Nine Chapters on the Mathematical Art), which is 

sometimes written as Jiu zhang suan shu.  Both books were commented on by many later 
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mathematicians with Liu Hui, an official in the Wei kingdom, being the first to comment 

on the Nine Chapters (Swetz 14).  In addition to remarking on the existing work, Liu Hui 

also added nine problems to the end of the Nine Chapters; this addition was later published 

as the Haidao Suanjing (The Sea Island Mathematical Manual).   The added nine 

problems, as well as the last chapter of the Nine Chapters and several discussions in the 

Zhou bi, all involved the application of right-angled triangles and demonstrated the 

Chinese knowledge of the Pythagorean Theorem. 

 The Zhou bi suan jing, an ancient Chinese text on astronomy and mathematics, is 

often referred to as The Arithmetic Classic of the Gnomon and the Circular Paths of 

Heaven, where the gnomon is an upright pole or post used for astronomical observations 

(Cullen 238).  The Zhou bi is thought to have been assembled in the Han dynasty, but was 

probably first written in the preceding Zhou dynasty.  It was later commented on by three 

main mathematicians: Zhao Shang (3rd century AD), Zhen Luan (6th century AD), and Li 

Chunfeng (7th century AD) (Cullen 68-73).  The book is written not just as example 

problems and answers, but as a dialogue usually between a master and a student.  The 

original text is very basic as the master assigns complex computations to the student 

without any indications of how to solve the problems.  Details and explanations are later 

given by the commentators.  The Zhou bi uses right-angled triangles to explain astronomy 

and is often interpreted as including a proof of the Pythagorean Theorem. 

 The astronomy of the Zhou bi follows gai tian cosmology, which says that the earth 

is a flat plane and the heavens rotate above the earth (Cullen xi).  With this idea, the height 

of the sun and other heavenly bodies can be found using a gnomon, or bi, and its shadow.  

When the sun is directly overhead, the gnomon casts no shadow, but as the gnomon is 
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moved north or south, the shadow changes length.  In the second section of the Zhao bi, 

Chen Zi, the master, is speaking to Rong Fang, his student.  He states (Cullen 178): 

The zhou bi is eight chi in length.  On the day of the summer solstice its shadow is one chi and 

six cun.  The bi is the altitude, and the exact shadow is the base.  1000 li due south the base is 

one chi and five cun, and 1000 li due north the base if one chi and seven cun.  The further south 

the sun is, the longer the shadow. 

This idea is referred to as the shadow principle: that for every 1000 li away from the ‘no 

shadow’ spot, the shadow of an eight chi gnomon increases by one cun.  One chi equals 10 

cun, and one li equals 1800 chi (Swetz 19).  The next passage states: 

Wait until the base is six chi, then take a bamboo … of 

length eight chi.  … So start from the base, and take the 

bi as the altitude.  60,000 li from the bi, at the subsolar 

point a bi casts no shadow.  From this point up to the 

sun is 80,000 li.  If we require the oblique distance to 

the sun, take the subsolar point as the base, and take the 

height of the sun as the altitude.  Square both base and 

altitude, add them and take the square root, which gives 

the oblique distance to the sun.  The oblique distance to 

the sun from the position of the bi is 100,000 li. 

 

This illustrates the idea of two similar right-angled triangles; the first triangle (∆ACB) 

having the gnomon, or bi, as its altitude and the shadow as its base, the second triangle 

(∆AED) having the height of the sun as its altitude and the distance from the end of the 

shadow to the ‘no shadow’ spot as its base.  The text also shows knowledge of the 

Pythagorean Theorem, squaring the base and the altitude to find the hypotenuse (AD).  

Two other problems in Zhou bi involve finding an unknown side of a right-angled triangle.  



Teresa Gonczy – Right Triangles in Chinese Math – p.6 
 

These problems entail finding the half chord of a circle, given the radius and the distance 

from the center to the chord.  In the original text, approximate answers to these problems 

were just given without any explanation of the calculations.  When Zhao Shang, the first 

commentator, wrote out explanations, he used the Pythagorean Theorem, although he 

doubled all the lengths so as to have a ‘nice’ answer to the square root.  These three 

problems demonstrate that the ancient Chinese recognized the Pythagorean Theorem and 

were able to use it in practical applications. 

 While the Chinese certainly understood the Pythagorean Theorem, were they able 

to prove it early on?  The beginning of the Zhou bi is often picked out as a proof, known as 

hsuan-thu.  The original text describes a conversation between Duke of Zhou and Shang 

Gao, who says (Cullen 174): 

The patterns for these numbers come from the circle and the square.  The circle comes from the 
square, and the square comes from the trysquare, and the trysquare comes from nine nines are 
eighty-one. 
Therefore fold a trysquare so that the base is three in breadth, the altitude is four in extension, 
and the diameter is five aslant.  Having squared its outside, halve it one trysquare.  Placing them 
round together in a ring, one can form three, four, and five.  The two trysquares have a 
combined length of twenty-five.  This is called the accumulation of trysquares.  

 

With just the original text, it’s difficult to see the 

proof.  The 3-4-5 right triangle is obvious, but how to 

use it to prove the Pythagorean Theorem is not 

obvious.  The first commentator, Zhao Shang, added a 

short essay and a diagram to help explain his 

interpretation of the proof.  The outer square has sides 

of length 7, and so its area is 49.  The green triangles and the red triangles are all right 

triangles with sides of 3 and 4, and area of 6.  The area of the tilted square (red & yellow) 
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must be the area of the total square minus the area of the green triangles; 49 – 4*6 = 25.  

An area of 25 means that the sides must have length 5, proving that the hypotenuse of the 

green right triangle must be the square root of 32 plus 42.  This could just be a special case 

that works.  However, Zhao Shang actually explains all of this in his essay without using 

specific numbers, in a sense doing the proof algebraically with words (Cullen 206-217).  If 

this proof is what is meant by “accumulation of trysquares” in the original text, then the 

Chinese proved the Pythagorean Theorem most likely before Pythagoras and  before 

Euclid’s often cited proof in Elements.  However, it seems more likely the Zhao Shang’s 

essay is the real proof, in which case the Greeks proved it first. 

 Around the same time as the Zhou bi suan jing was written down, the Chiu chang 

suan shu was also taken down.  The Chiu chang suan shu, sometimes referred to as Jiu 

zhang suan shu, consists of nine sections devoted to different applications of mathematics, 

and is often translated as The Nine Chapters on the Mathematical Art.  Like the Zhou bi, 

the exact author and date of the Nine Chapters is not known, although tradition says that 

Chang Tshang was the first to write the entirety.  The Nine Chapters were commented on 

by many mathematicians, including Liu Hui around 250 AD (Swetz and Kao 17).  The 

problems given in the Nine Chapters involve many different areas of mathematics.  Areas 

of figures are found, as are square and cube roots.  Fractions are added, subtracted, 

multiplied, and divided using lowest common denominators and greatest common factors.  

Arithmetic and geometric progressions are introduced, as well as systems of linear 

equations.  The last chapter presents 24 problems on right-angled triangle properties, 

showing the application of the Pythagorean Theorem (Swetz and Kao 18-24). 
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 In ancient China, the base of a right-angled 

triangle was called kou or gou (meaning ‘leg’), the 

altitude was ku or gu (meaning ‘thigh’), and the 

hypotenuse was hsian or xian (meaning ‘bowstring’) 

(Cullen 77 & Swetz and Kao 26).  The problems in the 

ninth chapter, called the Kou-Ku chapter, progress from 

easy to hard.  The first three problems only require 

simple knowledge of the 3-4-5 right triangle.  In each problem, two of the three sides are 

given, and the reader is asked to find the third side.  In Liu Hui’s commentary, he refers to 

a diagram similar to one used by Euclid in his Elements’ proof, showing the squares of the 

lengths on the sides of the triangle (Swetz and Kao 26-28).   

 The rest of the problems in the Kou-Ku involve figuring out where the triangle is in 

the practical situation given and then finding a side of the triangle, given different lengths 

or ratios.  The methods and explanations given clearly make use of the Pythagorean 

Theorem.  In Problem 6, the kou and the difference of hsien and ku are given in the context 

of a reed plant in the middle of a square pond.  The given method to find ku and hsien is to 

“find the square of [kou], and from it subtract the square of [hsien minus ku].  [Ku] will be 

equal to the difference divided by twice [hsien minus ku].  To find [hsien] we add [hsien 

minus ku] to [ku]” (Swetz and Kao 30).  Using our modern-day notation of a, b, and c, this 

method says that (a2  - (c-b)2)/(2(c-b)) = b.  Let’s see:  

a2 - (c-b)2     =      -c2 +2bc -b2 +a2     =     2bc -2b2      =    b     when we know a2 + b2 = c2 
   2(c-b)   2c -2b             2c -2b            so substitute a2 - c2 = -b2 

 

The word formula given in Problem 6 does indeed find b, or ku.   
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 Some of the later problems involve similar triangles and the use of proportions.  

Problem 17 talks about a 200-paces square city with gates in the center of each side.  A 

tree is located 15 paces from the east gate.  If a person goes out the south gate, how many 

paces will he have to go in order to see the tree?  The answer is given as 666 2/3 paces 

which is “the quotient found by using the 15 paces as a denominator and half the width of 

the city squared as the numerator” (Swetz and Kao 52).  This problem can be thought of as 

two similar triangles on the east and south sides of the city.  The first triangle has one side 

of 15 paces to the tree and the other side of 100 paces (half the side length of the city).  The 

corresponding sides on the second triangle are the 100 paces (again half the side length of 

the city) and the unknown number of paces out in order to see the tree.  The proportion is: 

 15   =  100          so  X = (100)(100)/15 = 666 2/3    (Swetz and Kao 52). 
100        X 
 
The Chinese understand the ratio similarity between the triangles, and later problems take 

this idea even further to include quadratic equations of the form x2 + ax = b (Problems 18 

& 19, Swetz and Kao 53-56).   

 Despite the progress from easy to more difficult in the Kou-Ku chapter’s 24 

problems, even the last eight problems concerning land surveying involve only one simple 

proportion between similar triangles.  These problems make use of one sighting 

observation in order to figure out some unknown and usually unreachable distance.  When 

Liu Hui commented on the Nine Chapters, he added nine more problems to the Kou-Ku 

chapter.  These nine problems were an extension of the 24 right-angled triangle problems, 

and were much more difficult using two or more sighting observations to find two sets of 

similar triangles (Swetz 27-28).  Liu Hui gave the problems, the answers, and the 
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calculations to find the answers; however, his method of proof, if any, is unknown.  In the 

Tang dynasty, the nine problems were taken out of the Nine Chapters, and were published 

as their own mathematical manual, the Haidao Suanjing, where Haidao, or Sea Island, 

refers to the first problem involving finding the distance to an unreachable sea island.   

 Like the last chapter of the Nine Chapters, the problems in Haidao Suanjing 

progress from easiest to hardest, although the difficulty difference between the beginning 

and the end of Haidao is much less than in the Kou-Ku chapter.  The first Haidao problem, 

the sea island problem, reads as follows (Swetz 20): 

Now for looking at a sea island, erect two poles 

of the same height, 3 zhang, the distance between 

the front and rear being a thousand bu.  Assume 

that the read pole is aligned with the front pole.  

Move away 123 bu from the front pole and 

observe the peak of the island from ground level; 

it is seen that the tip of the front pole coincides 

with the peak.  Move backward 127 bu from the 

rear pole and observe the peak of the island from 

the ground level again; the tip of the back pole 

also coincides with the peak.  What is the height 

of the island and how far is it from the pole?  

 

The diagram gives a better understanding of the problem (for clarification, the letters for 

the top line are P, K, J, H, I, & F; the middle line R, A, G, C, M, & E; and the bottom line 

Q, S, B, N, & D).  AS and CN are the two poles of length 3 zhang, or 30 chi, where one 

zhang is ten chi and one bu is six chi (Swetz 19).  SN is the distance between the poles, 

1000 bu, or 6000 chi.  SB is the length 123 bu, or 738 chi, and ND is the length 127 bu, or 

762 chi.  The problem asks for PQ and QS.  Using similar triangles, we find that: 
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AS = SB       &       CN = ND     &   we’re given AS = CN, so      SB = ND 
PQ    QB                 PQ    QD                                                          QB    QD 
 
Using chi lengths given, we have     738       =             762           . 
           738 + QS       762 + 6000 + QS 
 
Cross multiplying, we get   562356 + 762*QS = 562356 + 4428000 + 738*QS 
    24*QS = 4428000 
    QS = 184500 chi =102 li 150 bu, the answer given in Haidao 
 
To find PQ, we just plug numbers back into one of the proportions:   
AS = SB  30   =          738        . 
PQ    QB     PQ      738 + 184500 
 
So 30(185238) = 738*PQ,   PQ = 7530 chi = 4 li 55 bu, the answer given in Haidao 
 
 Despite the relative simplicity of using similar triangles, after reading Liu Hui’s 

calculation method, some researchers contend that Liu Hui and his Chinese contemporaries 

did not use similar triangles; instead, it is believed that Liu Hui used a proof method 

known as “out-in” (Swetz 35-37).  The “out-in” principle uses equal area rectangles to find 

proportions of sides.  For the sea island problem, we find the area of QNCR equals the area 

of CEFH, as the diagonal PD splits the whole rectangle into equal halves and those areas 

are left over after taking out RCHP and NDEC.  Apply the same principle to the big 

rectangle QBJP, so we get area of QSAR equals area of AGJK, and we place CMIH to 

have the same area.  We observe that area of SNCA is the area of QNCR minus area of 

QSAR, which is the same as area of CEFH minus area of CMIH, which is MEFI.  If area 

of SNCA equals area of MEFI, then (AS)(SN) = (IM)(ME), but IM = PR, ME = ND - CM, 

and CM = SB, so (AS)(SN) = PR(ND -SB), giving: 

PR =  (AS)(SN)   so     PQ = (AS)(SN)   + AS, which is the calculation 
          (ND - SB)          (ND - SB)            method given in Haidao 
 
Then we use area of QSAR equals area of CMIH to find QS (Swetz 42-43). 
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 Through the problems and exercises in Haidao Suanjing, as well as in the Kou-Ku 

chapter of the Nine Chapters and in Zhoi bi, the ancient Chinese use of the Pythagorean 

Theorem and other properties of right-angled triangles is obvious.  Unfortunately, the 

difficulty in dating ancient Chinese manuscripts renders it impossible to definitively know 

who came first: Pythagoras or a Chinese Pythagoras.  However, Greece was certainly not 

the only place for great mathematical discoveries.  History of mathematics books would do 

well to write about the great Chinese and other Asian contributions so as to avoid an Indo-

European ethnocentrism. 
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